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This paper deals with nonlinear streaming effects associated with oscillatory 
motion in a viscous fluid. A previous theory by Holtsmark et al. (1954) for the 
streaming near a circular cylinder in an incompressible fluid of infinite extent is 
reconsidered and used to obtain new numerical results, which are compared with 
earlier observations. The regime of validity of this theory is considered. The 
condition to be satisfied by the Reynolds number is found to be less stringent 
than was previously supposed. 

The more recent theory by Wang (1968) based on the outer-inner expansion 
technique is discussed and corrected with the Stokes drift. 

The case of an incompressible fluid enclosed between two coaxial cylinders, 
one of which is oscillating, is considered in detail. New theoretical and ex- 
perimental results are given for various values of the parameters involved 
(Reynolds number, amplitude and cylinder radii). 

1. Introduction 
The boundary-layer flow (acoustic streaming) induced by an oscillating 

cylinder is studied theoretically and experimentally. First, we consider the two- 
dimensional flow occurring near a fixed solid cylinder in an oscillating viscous 
and incompressible fluid of infinite extent. Since incompressibility is assumed, 
this flow is the same as that obtained by allowing the cylinder to  oscillate in 
an otherwise quiescent fluid, when referred to an oscillating co-ordinate system 
fixed to the cylinder. (The vorticity equation and the boundary condition are 
the same in the two cases.) Taking into account the Stokes drift? (see §6), it 
is also proved that the Lagrangian-mean flow is the same, within our approxi- 
mations, whether an oscillating or a fixed co-ordinate system is used. (See 
Skavlem & T j ~ t t a  (1955) for a proof to the second order of approximation and 
Fjsra (1970) for higher order approximations.) This is an important property 
of the flow, as all experimental observations near an oscillating cylinder refer to 
a fixed co-ordinate system. 

Further, the flow is similar to the one observed in the case of a standing sound 

t This drift is frequently called the ‘velocity transform’ in the acoustic literature. 
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wave interacting with the same cylinder, provided that the wavelength is large 
compared with the cylinder radius and that the acoustic Mach number is much 
smaller than one. Generally, this boundary-layer flow depends on the cylinder 
radius a,  the frequency w ,  the amplitude of oscillations and the kinematic 
viscosity v. The important parameters are IM = U(W/V)&,  e = s/a, R, = s2M2 and 
H= Rs(L,/a)2, where L, is a characteristic distance for changes in the flow vorticity 
V2+, in the radial direction. In  recent years the problem has been studied 
theoretically by several authors using the outer-inner expansion technique (for 
a review, see Riley 1967).t However, in these works there are few quantitative 
comparisons with experiments.$ 

For the one-cylinder model we present new numerical results based on the 
theory by Holtsmark et al. (1954) for R, < 1, and compare these with some earlier 
experimental observations by Holtsmark et al. (1954). The regime of validity of 
the theory is discussed. In  particular, we find that the condition R, < 1 can be 
relaxed to X! Q 1. We also add some comments on the more recent theory by 
Wang (1968) based on the outer-inner expansion technique. The theory is 
corrected with the Stokes drift, and its regime of validity is discussed. Finally, 
the important case R, & 1 is discussed briefly. 

Second, the flow of an incompressible viscous fluid enclosed between two 
coaxial circular cylinders, one of which is oscillating, is also considered. Here 
R, 5 1. A previous theory by Skavlem & Tjatta (1955) valid for A & a ( A  is the 
radius of outer cylinder) is extended to cover arbitrary values of the ratio Ala. 
New numerical results are given and compared with a series of new experimental 
observations, as well as with some earlier observations by Olsen (1956) near the 
inner cylinder. 

The present paper is the first of two treating this streaming problem. A second 
paper by Bertelsen will report on further observations for the case R, 3 1. 

2. Basic equations 
For the fluid velocity v we put 

v = v, + v,, 

where u and s refer to the unsteady and steady part respectively. On time 
averaging we get 

The fluid is assumed incompressible. We introduce the stream function 

(v> = (v,), (v,) = 0. ( 2 )  

1c. = 1c.u+1c.* (3) 

and separate the basic vorticity equation into an unsteady and a steady part, 
giving 

Vv41c., - a(v2@,)lat = v,. V V Z ~ ~ . ,  + v,. vv21c., +- p,. vv21c.,lU, 
vV4+, - v, . vv2+, = (v, . VVZ$J, 

(4) 

(5) 

t For earlier works, see the review paper by Nyborg (1965). 
2 The related problem of the forces exerted by a viscous fluid on oscillating cylinders 

has recently been considered by Williams & Hussey (1972). 
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where v = ,u/p is the constant kinematic viscosity coefficient. Equations (4) and 
( 5 )  are nonlinear. To get solvable equations we now make the following approxi- 
mations, which will be justified later. 

(a) We linearize (4), i.e. we neglect the right-hand side of the equation. 
(b )  We neglect the second term on the left-hand side of (5). We get 

The solution $u of (6) is taken as a first approximation and is inserted into the 
right-hand side of (7),  thereby giving us a linear equation for $s. Thus we find 
@s and thereby v, in the second approximation. 

3. Boundary conditions 
One cylinder 

We introduce cylindrical co-ordinates ( r ,  0,  z) ,  the z axis being along the axis of 
the cylinder. For r + c c  the fluid oscillates perpendicular to the axis of the 
cylinder in the direction 8 = 0 with velocity 

u = U,coswt, 

where U, is a constant vector. The boundary conditions for v, become 

-+ “’I -+ (U, cos cos wt, - U, sin cos at, 0)  when 

= 0 when r = a (no-slip condition). 

The boundary conditions for v, become 

(9) I - t o  when r - t c o ,  
= 0 when r -+ a (no-slip condition). 

Two cylinders 

We introduce a cylindrical co-ordinate system fixed to the inner cylinder. The 
outer cylinder is oscillating perpendicular to the cylinder axis in the 8 = 0 
direction with velocity U = U, cos wt. 

For a point on the outer cylinder we have 

r = ro+g, 

where r, is the initial position vector of the point and 

(10) 
U 

0 w 
g =st  U,coswtdt = Osinwt.  

The velocity of an arbitrary point on the outer cylinder is given by 

v = v(r,+g,t) 

= v(ro, t )  + (g  . VrL0,  ( 1 1 )  

taking illto account the first two terms in it Taylor series. 
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The first-order (linearized) boundary conditions become 

p ( ~ ,  8, t )  = u, cos e cos wt, 

v p ( ~ , o , t )  = -uOsinecoswt, 

and these are the conditions used on the oscillatory velocity v,. 

boundary conditions: 
The 'no-slip' requirement on the cylinders leads to the following second-order 

(13) } 
vi2)(A, 8, t )  = { - 5. Vv(l)),.=,.e,., 
vL2)(A, 8, t )  = { - 5. V+)},.,,.e,. 

The time averages of these expressions are the conditions we use on the streaming 
velocity v,. On the inner cylinder the velocities are zero to all orders of magnitude. 

We find 
(v$2)(A, 8, t ) )  = 0, (vp(A, 8, t ) )  * 0, 

lim(vb2)(A, 8, t ) )  = 0 (@) + 0 as a2/A2 -f O), 

in agreement with the results by Skavlem & Tjatta (1955) for A 9 a. (For further 
details, see appendix.) 

A-XU 

4. Solution 
One cylinder 

We f i s t  solve ( 6 )  subject to conditions (8). The solution is well known from the 
work of Holtsmark et al. (1954). (See equations (2.07) and (2.11) in their paper.) 
It has the form 

II., = F(r )~ in8e -~"~+c .c . ,  (14) 

where F(r )  involves Hankel functions and changes significantly through the 
oscillatory boundary layer, i.e. over a distance SAC = (v /w) i .  

Now II., is inserted into (7), which is easily solved subject to conditions (9). 
The solution turns out to have the form 

(15) $s = f ( r )  sin 28, 

where f ( r )  is given by equation (3.12) in the paper of Holtsmark et al. (1954). 

basis for our numerical results for the one-cylinder case. 
The solution (15) corrected with the Stokes drift described in 9 6 will form the 

Two cylinders 
We now first solve (6) subject to conditions (12). The solution is readily obtained, 
but it is given by a very long expression involving Hankel functions with 
arguments r(iw/v)* and a(iw/v)%. It has the same form as (14), but to make a dis- 
tinction from the one-cylinder case, we write 

$u = G(r)  sin Oe-$Ot + G . C . ,  (16) 

and refer to the appendix for derivation of the solution and further details. 
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This first-order solution is inserted into the quadratic terms in the streaming 
equation (7), and the resulting equation is solved using the above-mentioned 
boundary conditions for the streaming velocity. The solution is given by very 
complicated integrals which have to  be solved numerically. We write 

$s = g(r )  sin 28, (17) 

where g(r )  is given by (A 9) in the appendix. This solution corrected with Stokes 
drift described in $ 6  forms the basis for our numerical analysis of the two- 
cylinder case. 

A preliminary theoretical report on this case with two cylinders is given by 
Svardal (1965); our formal solution is the same as his. The numerical approach 
to the solution, however, differs. The accuracy of Svardal’s numerical results is 
not sufficient to explain the observed effects a little away from the inner cylinder. 

Numerical methods 

The numerical calculations were carried out on an IBM 360j50 HG computer in 
double-precision mode. Numerical values of the Hankel functions were obtained 
from the asymptotic series. Simpson’s formula was used in the integrations 
necessary for obtaining the stream function. The tangential (particle) velocity 
component was obtained by numerical differentiation of the stream function. 

5, Validity of the method used 
Let us first consider the one-cylinder case. We assume 

S,, c a, i.e. M > 1. 

The solutions of the linearized equation (6) are found to be a good approxima- 
tion to the unsteady stream function if 

B = Uo/wa < 1, (18) 

i.e. the oscillating amplitude is much smaller than the cylinder radius. This is 
known from previous studies (see, for example, Riley 1967) and is also found by 
inserting into the different terms of (4) the solutions obtained for II; and $s from 
(6) and (7). 

Further, inserting these solutions also into (5), we find that the second term 
of this equation is of order relative to  the first one. Thus the approximation 
introduced in (7) by neglecting this term can only be justified if 

Here V ,  is a characteristic value of the 8 component of the steady velocity and 
L, and Le are characteristic distances for changes in the vorticity Vll., in the r 
and 8 directions respectively. 

This, however, presumes that the uniform flow represented by the boundary 
condition (8) for r --f co is reached at  r ia  = O( 1). In  other cases we have to consider 
other approximations (Oseen type; see Riley 1967; Fjara 1970) away from the 

F L M  32 



498 A. Bertelsen, A. Svardal a d  8. T j ~ t t a  

cylinder and base our studies on matching principles. On the other hand, using 
an Oseen type of approximation uniformly for all r 2 a leads to no second-order 
streaming effects, when one takes into account the Stokes drift (see Westervelt 
1953). 

Schlichting in his model (1932) found Utlwa to be a characteristic value of V,. 
He further had Lo = a. Inserting this in (20) we get 

As L,, < a, here too our method is expected to give correct results for 

R, = U ~ / W V  5 1. (20) 

In  practice it seems to predict the streaming correctly at least up to R, II 1; 
see results in $ 8. (Riley (1967) and Wang (1968) give more restricted ranges of 
validity for this method.) 

For R, % 1 Stuart (1966) and Riley (1965) have discussed the possibility of an 
outer steady boundary layer within which the streaming is governed by the full 
nonlinear Navier-Stokes equations. I ts  thickness is of order aR;*, which is also 
obtained by putting 2 = 1. Schlichting's inner solution (see $9)  is assumed to 
be valid near the cylinder and is used to determine the solution for the outer 
boundary layer. One obtains Schlichting's solution from the one given by Holts- 
mark et al. (1954) by carrying out an expansion in powers of M-l (see Raney, 
Corelli & Westervelt 1954). It is therefore of interest here to  note that R < 1 
within Schlichting's boundary layer. In  fact we find 

L, = S, = O(S,,) < a, 
implying that R = R,M-2 = €2 < 1. 

This indicates that Schlichting's inner solution is a good approximation to the 
solution near the cylinder, a result that is also supported by our recent measure- 
ments (for R, % 1, see Bertelsen 1971). 

Considering now the case with two cylinders, we find by similar arguments 

R = Rs(L,/L,)2 < 1 

as a condition for using the method described in $4 .  

6. Stokes drift 
Thevelocities foundsofararethe Eulerianvelocities vE. The observedvelocities, 

however, are found by following one particle over some distance for some time 
and calculating the average velocity, i.e. one observes the average Lagrangian 
velocity. Therefore, before comparing our theory with experimental results we 
have to find the Lagrangian velocities v$ and v: from our previous results. The 
relations between the Lagrangian and Eulerian velocities are in our approximation 

v," = v," = v,, 
v," = v," + <j- v, at. VV,). 
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Thus the unsteady velocity does not have to be corrected. The steady velocity 
v: has to be corrected by a term Av, = (/vu dt . Vv,) = - $V x (v, x [vu dt), the 
Stokes drift or velocity transform. The importance of this term was first pointed 
out by Stokes (1847) and later by Rayleigh (see Rayleigh 1945). This term has 
been accounted for by Raney et al. (1954) and Skavlem & Tj0tta (1955). For the 
steady stream functions we get the following relation : 

~ = $.? + C(r, 4, 
where C(r, 0) is defined by 

Av, = -V x (Ck), 

k being a unit vector in the z direction. 

(1954), and has the form 

This implies that we can write 

For the case of one cylinder, C(r, 8) is given by equation (14) in Raney et al. 

C(r, 8) = h(r) sin 28. 

$f = f ( r )  sin 28 -t- h(r) sin 26 = f L ( r )  sin 26. 

For the case of two cylinders, C(r, 8) is given by (A 12) and by (A 13) in 
the appendix. 

The correction term C(r, 8) is approximately zero away from the boundaries. 
Near the boundaries there is a phase shift in the oscillations depending on r 
and 8, and there the effect of the Stokes drift is significant. It affects the thickness 
of the steady boundary layers and the values of the steady velocities. 

At the outer boundary the effects of the nonlinear boundary condition (cf. (13) 
et seq.) cancel the Stokes drift effects leading to the physically meaningful result 
that the steady part of the particle velocity (Lagrangian mean velocity) is zero 
at this boundary. 

7. Apparatus and method of observation 
The apparatus is much the same as that used by Olsen (1956). However, some 

modifications and improvements were necessary to enable us to study the 
streaming for high R, and to take into account the effects of the outer boundary. 
A sketch of our apparatus is shown in figure 1. 

The inner cylinder is suspended with perlon lines. This cylinder is forced to 
oscillate sinusoidally by putting the cylinders in a strong, constant magnetic 
field and supplying the inner cylinder with an alternating current. 

The motion of the fluid is made visible by tracing particles and photographed 
in stroboscopic light synchronized to the frequency of oscillation or the integral 
part of this. 

For R, N 0.75 the experiments were performed in air and in a mixture 
of water and glycerol t o  give a kinematic viscosity of 0.15cm2/s. For the case 
R, $ 1 (R, N 90 and 400) the fluid was pentane. 

32-2 
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FIGURE 1. Sketch of the apparatus used in the experimental investigation: G ,  inner 
oscillating cylinder; A ,  D, outer cylinder with double walls; P ,  L, P, B, R, illumination 
equipment; K ,  camera with bellow and lens; S, camera tripod. 

8. Results and discussions 
R, N 1, one cylinder 

For different values of the cylinder radius a we have computed the thickness 
S,, of the inner steady boundary layer defined by S,, = r -a,  where r is the zero 
point of fL  ( r ) .  The results are given by curve I in figure 2, where we also have 
plotted the experimental values (denoted by circles) found by Holtsmark et al. 
(1954) for the case of a standing sound wave interacting with a cylinder. The 
agreement between theory and experiment is excellent. The theoretical point 
S, = 0.068 em for a = 0.11 cm found earlier by Skavlem & Tjratta (1955) and 
by Raney et al. (1954) fits in with these results. In  the experiments B ranges from 
&- to & so condition (18) holds. Further one typically has or order l O - l ,  
implying that condition (19) also holds. The range of M is from 10 to 50. 

To illustrate the importance of the Stokes drift we have plotted (curve 11, 
figure 2) the numerical values for the thickness of the inner steady layer found 
by Holtsmark et al. (1954) without adding the Stokes drift. The curve approaches 
curve 111, representing the numerical value found by Schlichting (1932), whereas 
curve I approaches curve IV, representing the corrected Schlichting value found 
by Raney et al. (1954). 
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IV 

FIGURE 2. Thickness of inner vortex system versus radius of inner cylinder. Frequency 
o = 2n x 200 s-l, kinematic viscosity v = 0.15 cmz/s. I, this work; 11, Holtsmark el al. 
(1954) ; 111, Schliohting (1932) ; IV, corrected Schlichting value found by Raney et aZ. 
(1954). -, --- , theory; 0, experiment (Holtsmark et d. 1954). 

R, 5 1, two cylinders 

Olsen (1955, 1956) has observed the flow between two coaxial cylinders, the 
inner one oscillating. The observations are limited to regions r/a < 3.2 near the 
inner cylinder. They are referred to a fixed co-ordinate system, but because of 
the invariance properties of the flow (see introduction), we can make a comparison 
with the results of our theoretical models. Olsen also has typically R of order 10-1. 
The one-cylinder theory compares favourably with the observations near the 
inner cylinder (./a 5-2 ,5 ) ,  where the outer boundary, for these cylinder radii, 
has little influence on the streaming. The effect from the Stokes drift, however, 
is significant and has to be taken into account. It affects the thickness of the 
inner steady boundary layer. Olsen’s observations also fit nicely with the results 
of figure 2 (curve I). 

The two-cylinder theory also leads to good agreement with Olsen’s observa- 
tions v t  for the case A / a  = 8 for r/a =- 2-5, see figure 3. For higher values of Ala 
his observations seem to be uncertain away from the inner cylinder. For A / a  = 20 
and the other parameters as in figure 3 the theory gives rJa NN 5.0 for the position 
of the cores of the outer vortex systems. This is in agreement with the result re- 
ported previously by Skavlem & Tjratta (1955). However, Olsen’s observations 
seem to indicate a much lower value, i.e., rc/a M 3.0. Skavlem & Tjratta explain 
this discrepancy as probably due to inaccuracy in the numerical calculations at 
this distance from the inner cylinder. Now we believe that the discrepancy is 
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FIGURE 3. Steady part of tangential Lagrangian velocity at  8 = 4 5 O ,  U, = 7.4cm/s, 
Y = 0.15 cm2/s, o = 277.200~-~ ,  a = 0.11 cm, A = 8a. - 3 theory; 0, experimental 
values (Olsen 1956). 

due to the experimental model used by Olsen. His model did not generate two- 
dimensional motion as was presumed in the theory. Probably the cylindrical 
enclosure was too short in the direction orthogonal to the plane of motion. It is 
easy to verify experimentally that shortening the length of the cylindrical en- 
closure causes the cores of the outer vortex systems to move inwards. Our new 
observations lead to .,/a = 5.0 k 0.2 for A / a  = 20, in perfect agreement with 
theory. 

We have been interested in determining the influence of the outer boundary 
on the steady streaming and examining the limit of validity of the theory. First, 
the main features of the flow at various radii of outer boundary, all other para- 
meters constant, are shown in figures 4 7  (plates 1-4). A minute experimental 
investigation of the effect of the outer boundary was carried out by measuring 
the following quantities for various radii of outer boundary. 

(a)  The thickness of the inner vortex system. 
(b )  The position of the core of the inner vortex system. 
(c) The position of the core of the outer vortex system. 
( d )  The steady part of the tangential particle velocity at  19 = 45". 
Table 1 gives U, NN 8.4 cm/s 2 5 %, H M 9.5 i: 2 % and R, M 0.75 2 8 %. 
The results for (a), (c) and (d) compared with corresponding theoretical results 

The position of the core of the inner vortex system was found to be constant 
are shown in figures 8-12. 
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a % 0.147 em_+ 1 yo, 
v % 0.15 cm2/s + 2 yo, 

w x 2f fx100s-~+2y0,  
E % -1”?5%. 

TABLE 1. Parameters constant during the investigation 

2.0 3 .0 4.0 5.0 6.0 7.0 

A la 
FIGURE 8. Thickness of inner vortex system as function of A/a. The most important 

parameters are as given in table 1. -, theory; Q, experiment. 

experimentally (within experimental uncertainty) and varies by less than one 
per cent theoretically for those ratios A/a considered, i.e. 2-15. 

Figure 8 shows that the thickness of the inner vortex system is influenced by 
the outer boundary when A/a < 5.0, and that the theory describes this dependence 
very well. 

Figure 9 shows the position of the core of the outer vortex system for 

2.0 < A/a < 10.0. 

It is shown to be sensitive to changes of the radius of the outer boundary, and 
comparison between theory and experiment indicates good agreement. 

Figures 10, I1 and 12 show the velocity of the steady streaming for different 
values of Ala. For the lowest values of Ala we notice an increase in the velocity 
maximum with decreasing AIa. 

We can conclude that our theory predicts results that are in good agreement 
with observations when E < 1 and 2 < 1. The case R, 5 1 is included in this for 
L, < a. The Stokes drift has to be introduced to adapt the theoretical results to 
the experiments. 

R8% 1 

For R, > 1 there are to date only a few qualitative experiments by Schlichting 
(1932) and others. Thus Olsen (1955) has observations for R, = 25, but with large 
amplitude, E = 0.7 and M = 7. For these values of R, and N he h d s  that the 
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4.0 6 0  8 0  10 0 12 0 14.0 

Ala 

2.0 
I I I I I I I I I I I I I I 

2.0 4.0 6.0 8.0 10.0 12.0 14.0 

Ala 

FIGURE 9. Radial position of the core of the outer vortex systems &B a function of A/a .  
Angular position of the core in the first quadrant is 0 = 45'. The most important para- 
meters have the values given in table 1. -, theory; Q, experiment. 

0.4 

0.3 

0.2 - - m 

v 

-2 
0.1 

-0.1 

FIGURE 10. Steady part of the tangential Lagrangian velocity a t  0 = 45' for A/a = 2.82. 
Other important parameters as in table 1. ---, theory; 0, experiment. 
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0.1 t 

-0.1 

FIGURE 11. Steady part of the tangential Lagrangian velocity at 0 = 45O for A/a  = 4.08. 
Other important parameters as in table I. -, theory; 0, experiment. 

thickness of the inner layer decreases slightly with increasing amplitude. For 
lower values of M ,  this decrease in thickness with increasing amplitude becomes 
very strong, according to the observations by Skogen (1951) and by Raney et al. 
(1954). 

The theories of Riley (1965), Stuart (1966) and Davidson & Riley (1972) are 
based on the assumption 22, > 1 ~ Our experimental set-up allows measurements 
in this high R, region. Thus at  R, = 90 and R, = 400 a typical outer boundary 
layer for the steady streaming is established, in qualitative agreement with the 
theories. Also a strong jet is formed in the direction along the axis of oscillation 
(see figure 13, plate 5). Further work on this case is in progress and will be reported 
elsewhere. 

9. Wang’s theory 
Wang (1968) has used outer-inner asymptotic expansions on the same stream- 

ing problem. The expansions are valid for large M only. For the inner region a 
stretched co-ordinate is introduced, defined by r /a  = 1 +VIM. The matching of 
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FIGURE 12. Steady part of the tangential Lagrangian velocity a t  6 = 45’ for Ala = 7.14. 
Other important parameters as in table 1. --, theory; 0, experiment. 

an outer and an inner solution results, for instance, in a steady stream function 
which is uniformly valid. It may be written as 

where 7 = ria. 
We have here introduced the term - e (y /M)  e+d2 sin (71 J2) sin 28, which is left 

out in Wang’s solution (the term Re ( - iyE) from his inner expansion, equation 
(3.36)). 

Let $ = 0 for 7 = qo. Then Sm/a = q0/M,  and from this Wang has found the 
values S,,/a for different values of a (and thereby of M 2 ) .  Also his results agree 
well with the experimental results by Holtsmark et al. (1954) (replotted here on 
figure 2).  We note, however, that this agreement is achieved without introducing 
the correction due to  the Stokes drift described in 3 6, the magnitude of which is 
indicated in our figure 2. The observations are for M ranging from 10 to 50. 
We would not expect Wang’s result to be valid for these moderate values of M .  
We find that the matching leading to (25)  is correct to first order in TIM only 
(v,. matches only to first order). Thus 7 / M  < 1 is presumed in the theory, whereas 
TIM is as high as 0-8 for M = 10. 
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In  fact if we compute the flow field from (25), using the same parameters as 

max V e  % 0.25 cm/s for rla w 1.12, 

This does not agree with observations (see figure 3). 
We have computed the Stokes drift correction to Wang’s steady solution, 

using his unsteady solutions. His inner solution leads to the following correction 
in the stream function: 

in figure 3, we find, for example, 

min Ve x - 0.19 cm/s for r/a x 1.54. 

€ 1  
‘- 2J2M 

A$ - --sin28 

(26) 
and his outer solution leads to 

€ - 
A?& = -- s i n 2 e + ~ ( ~ - 2 ) .  

Mr2J2 
We note that 

- 1 - 
lim A+.t = lim = -- 

7-+m 11+1 M42 ’ 

and uniformly valid corrected steady solution (in Wang’s approximation 
scheme) is readily obtained: 

e - ~ 2  - lcrc = tsin2s((i-&) (:-1)+1[*-- 
M 242 2.42 

+ ~ ( C N - ~ ) .  (28) 

Putting F = 1 + r / M ,  and neglecting consistently terms of order s/M2 (note such 
terms are not accounted for in the inner expansion up to our order), we get 

which is Schlichting’s inner solution corrected with the Stokes drift (cf. Raney 
et al. (1954) and our figure 2). 

- Now 
$c = 0 

leads to 7 w 2.083, independent of M (but valid only for M % 1, or in practice 
M $ 10 to give q/M < 1). In this approximation 

and 

SDc/a w 2*083/M 

S,,/S,, w 2,083. 

We conclude that Wang’s method, when one matches to the first order only, 
should give Schlichting’s value for the thickness of the steady boundary layer. 
The asymptotic expansions in 1/M, when matched to higher order in VIM, may, 
however, be used for moderate values of M (about 50), but the convergence seems 
to be slow, and it cannot, with the present stretching ;i; = 1 +y/M, explain the 
strong increase in S,, with decreasing a (and thereby M )  as observed for moderate 
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M .  Matching to second order should compare with including terms O ( l / M 2 )  in 
the expansion of the theory by Holtsmark et at. (1954), and which are given by 
Raney et al. (1954). 

The authors are grateful to L. E. Engevik and H. Hobsk for most valuable 
discussions on this work. 

Appendix 

We define @ b y  

and write (8) in the form 

First-order solution (two cylinders) 

vzll., = 

with CD = R(r)sinBe-iut+c.c. 

Equation (A 2) leads to  a Bessel equation in R(mr), where m = (iw/v)&. By 
substituting its solutions for CD expressed by Hankel functions Hil)(mr) and 
HI2)(mr) in (A 1) and assuming 

1c., = G(r)sinBe-iut+c.c., 
we obtain 

G ( r )  +- G'(r) -- G(r )  = BlHI1)(mr) +B2H~2)(mr) ,  

which can be solved by elementary methods. The first-order solution II., can be 
written as 

$-u(r, 8, t )  = 2 [ r(H&l)(mr) - H&')(mr)) + - r (H&l)(mr) at- r2Hil)(mr)) 

+% 2m [r(a2H&2)(ma) --Hiz)(mr)) +- r (a2HP)(ma) - r2Hi2) mr 

1 1 
r r2 

1 
( 41 

1 

1 

x sin Bexp ( - iwt) + c.c., (A 3) 
where 

_ -  B1 - -- '0 [a2Hi2)(ma) - A ~ H & ~ ) ( ~ A ) I ,  
2m N 

5 = 5 [a2HLl)(mu) - A ~ H L ~ ) ( ~ A  )I, 
2m N 

N = [H~1)(ma)-H~1)(mA)][a2H~2)(m,)-A2H~2)(mA)] 
- [Hk2)(ma) - Hh2)(mA)] [a2Hi1)(ma) - A2HL1)(mA)], 

when we take into account the boundary conditions (12). 
For the velocity components we obtain 

= Re [S(r) cos 8 e-iut] = [S,(r) cos wt + S2(r) sin wt] cos 8, (A 4) 

I a2 ~ ( r )  = - 3 H&l)(ma) - H&l)(mr) + HLl)(rna) - Bp)(mr) 

1 a2 
2m [ 

H&2)(ma) - ~ h z ) ( m r )  +rz H L Z ) ( ~ )  -Hi2)(mr) , 
2m 
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Second-order solution (two cylinders) 

J(mr) = -- , D = J(ma), 

Introducing 
B, H&l)(mr) 
2m U, 

, E=K(ma) ,  
B, HL1)(mr) 

K(mr) = -- 
2m U, 
B, Hi2)(mr) 
2m U, 

B, Hi2)(mr) 
2m U, 

d f (mr)  = - , P=M(ma) ,  

N(mr) = -- , G=N(ma),  

we obtain on substituting the first-order solution in (9) 

vV4$, = h(r) sin 28, 

(D* +P*) ( K + N )  +2(J+M) (K* + N * )  
2v 

+;(E+G)(J*+M*) 

Putting 
we readily obtain 

$, = g(r )  sin 28, 
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(A 5) 

where C,, ..., C, are integration constants to be determined by the boundary 
conditions. 

From (13) we obtain 

(r$2))r=A = 0, ( V L ~ ) ) ~ = ~  = K sin 28, (A 9) 
where 

This leads to 
g ( A ,  a)  (A2 - a2) - 2h(A, a)  (A2 + a2) 

2 4 ~ 2  - 4 3  
c, = 

g(A,a)-4(A6-a6) c, 
2(~4-a4)  c2 = 
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Xtokes drift 

Inserting the linearized solution (A 3) in the correction term for the stream 
function 

C(r,  8)  = - *(v* x J-VJt), 

we obtain for the two-cylinder case 

The stream function for the Lagrangian velocity is thus 

7fv = + C,(r)l sin 28, (A 13)  

where the definition of C,(r) is obvious. 

oscillations be a function of the space co-ordinates. For, writing 

V, = e,v,cos (Wt+q$.(r, 8))+egv,co~(ot+4g(r,8)), 

where v, and Vg are the amplitudes of the r and 6 components of the velocity 
and $, and $0 describe the space variations of the phase, we find, on inserting 
this in 

A necessary condition for a non-zero Stokes drift is that the phase of the 

Av, = ((1 v u d t )  - VV,), 

that only terms in which the derivatives of 4, and $0 enter give a non-zero 
contribution. 
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(h)  

FIGURE 4. (a) Lagrangian streamlines of the steady part of the flow in one quadrant 
from the two-cylinder theory for A/a  = 2.0. Other important parameters as in table 1. 
(b)  Corresponding experimental results. 
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Plate 2 

( h )  

FIGURE 5. (a) Lagrangian streamlines of the steady part of the flow in one quadrant from 
the two-cylinder theory for A / a  = 2.82. Other important parameters as in tablc 1. 
( b )  Corresponding experimental results. 
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FIGURE 6. (a) Lagrangian streamlines of the steady part of the flow in one quadrant from 
the two-cylinder theory for A/a = 4.08. Other important parameters as in table 1. 
(b)  Corresponding experimental results. 
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I~'IGCXE 7. (a) Lagrangian stroamlittcs of the stoady part of thc flow in one qiradrant from 
the two-cylindcr theory for A /a = 7.14. Othcr iinportarit parameters as i n  tuhlc I .  
(b)  Corresponding experimental results. 
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